
SPARC Documentation
Release 0

Stefania Ghita, Alexandru Gavril, Miruna Barbu, Andrei Nica, Mihai Trascau, Alexandru Sorici

Aug 21, 2020

Table of contents:

1 Getting Started 1
1.1 Hardware Prerequisites . 1
1.2 Software Prerequisites . 1
1.3 Project . 1

1.3.1 External Platform . 2

2 Running and Configuration Pepper with ROS 5
2.1 Installing ROS . 5
2.2 Pepper ROS Integration . 6

2.2.1 Installing NaoQI . 6
2.2.2 Installing the required ROS modules . 6

2.3 Testing the Installation . 6

3 ROS Modules List 9
3.1 Configuration . 9

4 Vision configuration 13
4.1 Software Prerequisites . 13
4.2 Testing the vision component . 14
4.3 Testing the vision component . 14
4.4 Fine-tuning the face recognition module . 15
4.5 Generate new QR codes . 15

5 Navigation Module 17
5.1 Creating a new map . 17
5.2 Running the navigation module on a map . 17

6 Speech Component 19
6.1 Speech recognition publisher . 19
6.2 Speech recognition subscriber . 20

6.2.1 Wit.ai configuration . 20
6.2.2 Understanding new phrases . 20

i

ii

CHAPTER 1

Getting Started

Welcome to the SPARC Project documentation.

1.1 Hardware Prerequisites

• Pepper Robot running NaoQI 2.5 or higher

• RaspberryPI 3

• RPLidar A1

1.2 Software Prerequisites

1. Ubuntu 14.04 operating system (or any other operating system which is compatible with ROS Indigo)

2. Install ROS [http://wiki.ros.org/indigo/Installation/Ubuntu]

3. Python 2.7

4. Pytorch installed and configured on the machine running CUDA 8.0+

1.3 Project

The project is organized as follows:

• The external_platform folder contains the python project used for external processing like running the Vision
module and interacting with the ROS environment.

• The master_catkin_ws is the ros workspace used on the external machine as well and contains the Navigation
module and all ROS related nodes.

• The rpi_catkin_ws is the ros workspace used on the Raspberry PI 3 and it is used to perform data acquisition.

1

http://wiki.ros.org/indigo/Installation/Ubuntu

SPARC Documentation, Release 0

1.3.1 External Platform

The python project is organized in a modular way with each module having a specific task.

Navigation

The module contains all the scripts interacting with the SLAM module. It contains the publishing nodes for the
location of the detected objects, people and QR codes. It also interacts with the SLAM module to send the current
robot position in the system.

Robot Interaction

The module contains all the scripts used to interact with the system from an external module. The module is used by
the speech module to send command to the system. In a similar fashion, the graphical user interface makes use of this
module to interact with the system.

Task Management

The module contains all the scripts used for the task management and planning. It is responsible with the manage-
ment of the commands queue and ensures when and if a task is executed. All the commands received by the robot
interactions module is forwarded to the task management module.

The planning is done using a Queue of Tasks. A task is defined by a node in a binary tree, having a success child and
a fail child, both which are defined also as Tasks.

Vision

The module is responsible with all the components used for detection, recognition and segmentation of person, objects
and qr codes.

TOC:

• Running and Configuration Pepper with ROS

– Installing ROS

– Pepper ROS Integration

* Installing NaoQI

* Installing the required ROS modules

– Testing the Installation

• Vision Module

– Testing the Vision module

– Face recognition module

* Adding a new face

* Removing existing faces

• Navigation Module

– Creating a new map

– Running the navigation module on a map

2 Chapter 1. Getting Started

SPARC Documentation, Release 0

• Speech Module

– Wit.ai configuration

– Understanding new phrases

• Integration of new command nodes

1.3. Project 3

SPARC Documentation, Release 0

4 Chapter 1. Getting Started

CHAPTER 2

Running and Configuration Pepper with ROS

The Sparc system requires having a machine running ROS Indigo which will run the master node and a Raspberry PI
3 running ROS used for data acquisition from the RP Lidar A1 or similar Lidar devices.

Any similar compatible devices which send Laserscan data to the master node can be used. The configuration for the
SLAM module will have to be fine tuned and adapted with the device.

2.1 Installing ROS

1. Setup your sources.list - Setup your computer to accept software from packages.ros.org. ROS Indigo ONLY
supports Saucy (13.10) and Trusty (14.04) for debian packages.

sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu $(lsb_release -sc) main"
→˓> /etc/apt/sources.list.d/ros-latest.list'

2. Set up your keys

sudo apt-key adv --keyserver hkp://ha.pool.sks-keyservers.net --recv-key
→˓0xB01FA116
sudo apt-get update

3. Install the full package of ROS sudo apt-get install ros-indigo-desktop-full

If the ros-indigo cannot be found in the sources, make sure you have Ubuntu 14 or other compatible operating
system! Check the ROS wrapper compatibility before continuing installing the system!

1. Initialise ROS DEP sudo rosdep initrosdep update

2. Setup the environment: echo “source /opt/ros/indigo/setup.bash” >> ~/.bashrcsource ~/.bashrc

3. Install python-ros sudo apt-get install python-rosinstall

5

http://docs.ros.org/melodic/api/sensor_msgs/html/msg/LaserScan.html

SPARC Documentation, Release 0

2.2 Pepper ROS Integration

Pepper requires the NaoQI framework installed and running in order to be able to interact with Pepper. Choregraphe
is also recommended for debugging. After installing the NaoQI framework the Sparc system requires having Pepper
integrated into the ROS framework, therefore altough Pepper cannot directly run ROS, a ROS wrapper can be installed
in order to perform data acquisition from the robot and send command using ROS common_msgs.

2.2.1 Installing NaoQI

1. Download the C++ and Python SDK (2.5+) https://community.aldebaran.com/

2. Extract the python SDK (pynaoqi-python2.7-x.x.x.x-linux64.tar) and the C++ SDK (naoqi-sdk-x.x.x.x-
linux64.tar) in ~/naoqi ~/naoqi/naoqi-sdk-x.x.x.x-linux64/naoqi

3. Export the SDK path variable:

export PYTHONPATH=~/naoqi/pynaoqi-python2.7-x.x.x.x-linux64:$PYTHONPATH
echo 'export PYTHONPATH=~/naoqi/pynaoqi-python2.7-x.x.x.x-linux64:$PYTHONPATH' >>
→˓ ~/.bashrc

4. Run python and check that you can import the library

from naoqi import ALProxy

2.2.2 Installing the required ROS modules

• The following command will install all the necessary ROS Modules that are used as wrappers over the Nao-QI
framework and required to interact with Pepper.

sudo apt-get install ros-indigo-driver-base ros-indigo-move-base-msgs ros-indigo-
→˓octomap ros-indigo-octomap-msgs ros-indigo-humanoid-msgs ros-indigo-humanoid-
→˓nav-msgs ros-indigo-camera-info-manager ros-indigo-camera-info-manager-py

• Install the Pepper specific modules

sudo apt-get install ros-indigo-pepper-.*

2.3 Testing the Installation

1. Run roscore on the master node

2. Run roslaunch pepper_bringup pepper_full.launch nao_ip:=<yourRobotIP>
roscore_ip:=<roscore_ip> [network_interface:=<eth0|wlan0|vpn0>]

• roscore_ip is the ip of the master node

• nao_ip is the IP of Pepper (can be found by pressing the button on Pepper’s chest)

3. Run rosrun rviz rviz

The robot should be shown inside the rviz application. If this fails to happen make sure that the pepper meshes are in-
stalled and accessible. To install the meshes run sudo apt-get install ros-indigo-pepper-meshes.

6 Chapter 2. Running and Configuration Pepper with ROS

https://github.com/ros/common_msgs
https://community.aldebaran.com/

SPARC Documentation, Release 0

If you have any problems moving the robot with move_base_simple goals in rviz try publishing a static transform
between the map frame and any other virtual frame in order to ensure that the map frame is available. This can be
done by running: rosrun tf static_transform_publisher 0 0 0 0 0 0 1 map my_frame 10.

If you still get problems, check that your laptop supports OpenGL 3 (it is displayed when opening RVIZ) and try
changing the frame from the Global Settings in rviz.

The robot should be displayed correctly and you can subscribe to additional modules by adding sensors using the add
button in RVIZ.

2.3. Testing the Installation 7

http://wiki.ros.org/move_base_simple

SPARC Documentation, Release 0

8 Chapter 2. Running and Configuration Pepper with ROS

CHAPTER 3

ROS Modules List

1. Pepper ROS Integration - pepper_bring_up

2. SLAM - hector_slam

3. Localization after initial mapping - amcl

4. Navigation - move_base

5. Data Acquisition on the Raspberry PI 3 - rplidar

3.1 Configuration

The two main launch files containing the full system launch can be found in
sparc/master_catkin_ws/src/pepper_sparc/launch/saved_slam.launch and in sparc/master_catkin_ws/src/pepper_sparc/launch/full_slam.launch.

The saved_slam_launch starts the Pepper ROS integration with pepper_bring_up, loads a map from the maps folder
inside the pepper_sparc node and runs amcl to localize the robot on the given map.

The full_slam_launch starts the Pepper ROS integration with pepper_bring_up, runs hector_slam to build the map.

Both launch files are compatible with the launch file used for running the move_base node, which can be found in the
same folder under navigation.launch.

The system works with both the saved map and with the the SLAM module.

1. Hector_SLAM:

The main launch file can be found at: sparc/master_catkin_ws/src/slam_launch/hector_mapping.launch

<node pkg="hector_mapping" type="hector_mapping" name="hector_mapping" output="screen
→˓">

<param name="pub_map_odom_transform" value="true"/>
<param name="map_frame" value="map" />
<param name="base_frame" value="base_footprint" />
<param name="odom_frame" value="odom" />

(continues on next page)

9

http://wiki.ros.org/pepper_bringup
http://wiki.ros.org/hector_slam
http://wiki.ros.org/amcl
http://wiki.ros.org/move_base
http://wiki.ros.org/rplidar
https://github.com/ami-lab/sparc
https://github.com/ami-lab/sparc/tree/master/master_catkin_ws
https://github.com/ami-lab/sparc/tree/master/master_catkin_ws/src
https://github.com/ami-lab/sparc/tree/master/master_catkin_ws/src/pepper_sparc
https://github.com/ami-lab/sparc/tree/master/master_catkin_ws/src/pepper_sparc/launch
https://github.com/ami-lab/sparc
https://github.com/ami-lab/sparc/tree/master/master_catkin_ws
https://github.com/ami-lab/sparc/tree/master/master_catkin_ws/src
https://github.com/ami-lab/sparc/tree/master/master_catkin_ws/src/pepper_sparc
https://github.com/ami-lab/sparc/tree/master/master_catkin_ws/src/pepper_sparc/launch
https://github.com/ami-lab/sparc
https://github.com/ami-lab/sparc/tree/master/master_catkin_ws
https://github.com/ami-lab/sparc/tree/master/master_catkin_ws/src
https://github.com/ami-lab/sparc/tree/master/master_catkin_ws/src/slam_launch

SPARC Documentation, Release 0

(continued from previous page)

<param name="map_resolution" value="0.05"/>
<param name="map_size" value="1024"/>
<param name="map_start_x" value="0.5"/>
<param name="map_start_y" value="0.5" />
<param name="laser_z_min_value" value="-1.0" />
<param name="laser_z_max_value" value="1.0" />
<param name="update_factor_free" value="0.9"/>
<param name="update_factor_occupied" value="0.9" />
<param name="map_update_distance_thresh" value="0.4"/>
<param name="map_update_angle_thresh" value="0.06" />
<param name="laser_min_dist" value="1.0"/>

</node>
<node pkg="tf" type="static_transform_publisher" name="base_to_laser_broadcaster"
→˓args="0 0 0 0 0 0 /base_footprint /laser 100" />

When running SLAM the map is updated every time the robot has moved over the map_update_distance_thresh
value and every time the robot has rotated over map_update_angle_thresh.

The values for update_factor_free and update_factor_occupied were increased in order to ensure that the mapping
can work in dynamic environments since the navigation module will take the dynamics into account.

1. AMCL

The mail configuration file can be found inside the saved_slam_launch file.

<node pkg="amcl" type="amcl" name="amcl" output="screen">
<!-- Publish scans from best pose at a max of 10 Hz -->
<param name="odom_model_type" value="diff"/>
<param name="odom_alpha5" value="0.1"/>
<param name="transform_tolerance" value="0.2" />
<param name="gui_publish_rate" value="10.0"/>
<param name="laser_max_beams" value="180"/>
<param name="min_particles" value="5000"/>
<param name="max_particles" value="50000"/>
<param name="kld_err" value="0.05"/>
<param name="kld_z" value="0.99"/>
<param name="odom_alpha1" value="0.2"/>
<param name="odom_alpha2" value="0.2"/>
<!-- translation std dev, m -->
<param name="odom_alpha3" value="0.8"/>
<param name="odom_alpha4" value="0.2"/>
<param name="laser_z_hit" value="0.5"/>
<param name="laser_z_short" value="0.05"/>
<param name="laser_z_max" value="0.05"/>
<param name="laser_z_rand" value="0.5"/>
<param name="laser_sigma_hit" value="0.2"/>
<param name="laser_lambda_short" value="0.1"/>
<param name="laser_lambda_short" value="0.1"/>
<param name="laser_model_type" value="likelihood_field"/>
<!-- <param name="laser_model_type" value="beam"/> -->
<param name="laser_likelihood_max_dist" value="5.0"/>
<param name="update_min_d" value="0.2"/>
<param name="update_min_a" value="0.5"/>
<param name="odom_frame_id" value="odom"/>
<param name="base_frame_id" value="base_footprint"/>
<param name="resample_interval" value="0.5"/>
<param name="transform_tolerance" value="0.1"/>

(continues on next page)

10 Chapter 3. ROS Modules List

SPARC Documentation, Release 0

(continued from previous page)

<param name="recovery_alpha_slow" value="0.0"/>
<param name="recovery_alpha_fast" value="0.0"/>
<param name="initial_pose_x" value="5.5"/>
<param name="initial_pose_y" value="10.0"/>
<param name="initial_pose_a" value="-2.6"/>

</node>

When running amcl the position of the robot is updated every time the robot has moved over the update_min_d value
and every time the robot has rotated over update_min_a. The initial pose x,y and z values should be set as the initial
guess for the algorithm and closer to the robot’s home position as possible.

1. RPLidar

The main launch file can be found in sparc/rpi_catkin_ws/src/launch/rplidar.launch.

1. Move_Base

The main configuration files for move_base can be found in: sparc/master_catkin_ws/src/pepper_sparc/nav_conf/.

The parameters depend a lot on the environment.

3.1. Configuration 11

https://github.com/ami-lab/sparc
https://github.com/ami-lab/sparc/tree/master/rpi_catkin_ws
https://github.com/ami-lab/sparc
https://github.com/ami-lab/sparc/tree/master/master_catkin_ws
https://github.com/ami-lab/sparc/tree/master/master_catkin_ws/src
https://github.com/ami-lab/sparc/tree/master/master_catkin_ws/src/pepper_sparc

SPARC Documentation, Release 0

12 Chapter 3. ROS Modules List

CHAPTER 4

Vision configuration

The vision component is composed of a set of independent modules, each responsible for one particular vi-
sion task (person detection, face recognition, QR code recognition, etc.). The implementation is located in the
sparc/external_platform/vision folder, with the modules distributed in the following folder hierarchy :

• facenet - contains FfaceNnet network for face recognition and Haar cascades for face detection

• image_provider - contains the script that gets the stream of images from the robot

• qrcodes_handler - contains the script that generates, detects and recognizes QR codes

• segmentation - contains Resnet-18-8s network for person segmentation

• tracking - contains implementation of SORT algorithm for object tracking

• yolo2 - contains YOLOv2 network for object detection

• data_processor.py - auxiliary file for processing data that comes from the vision modules

• vision_manager.py - file for combining all the modules’ outputs into a single vision result

• run_vision.py - main file for running the vision component as a stand-alone application

4.1 Software Prerequisites

To test the vision component both as a stand-alone application or within the big project, the machine must install all
the following required packages:

• Cython (version >=0.27.3)

• H5py (version >= 2.7.1)

• Matplotlib

• Naoqi (version >=2.5)

• NumPy

• OpenCV-Python (version >=3.3.0.10)

13

https://arxiv.org/abs/1503.03832
https://docs.opencv.org/3.3.0/d7/d8b/tutorial_py_face_detection.html
https://github.com/warmspringwinds/pytorch-segmentation-detection
https://arxiv.org/abs/1602.00763
https://pjreddie.com/darknet/yolo/

SPARC Documentation, Release 0

• Python (version 2.7)

• Pillow

• Psutil

• PyCrayon (version >=0.5)

• PyTorch

• PyZBar

• Requests

• TensorFlow (version >=1.2)

• Scikit-image

• Scikit-learn

• SciPy

4.2 Testing the vision component

python run_vision.py [-r] [-v]

The script gets input images from a video camera or the robot’s camera and displays 3 images:

• RGB image - input image with overlapped detections

– Blue bbox - detected person. The text above represents the person ID, accuracy of detection and distance
to the person

– Yellow bbox - detected object. The text above represents the object name, accuracy of detection and
distance to the object

– Pink bbox - detected QR code. The text above represents the QR code ID, accuracy of detection and
distance to the QR code

– Green/Red bbox - recognized/unrecognized face. The text above represents the person name and accuracy
of recognition

• Depth image - depth image with overlapped bboxes representing detected people

• Segmented image - black and white image, where the white pixels represent the segmented detected person
tensorflow==1.2 Scipy scikit-learn matplotlib Pillowrequests Psutil

Numpy

Scikit-image

pyzbar

Naoqi 2.5.5 (if robot input required)

4.3 Testing the vision component

python run_vision.py [-r] [-v]

The script gets input images from a video camera or the robot’s camera and displays 3 images:

14 Chapter 4. Vision configuration

SPARC Documentation, Release 0

• List item

Optional arguments: -r, –robot_stream = use the input from the robot’s camera. By default the script uses the video
camera of the machine. -v, –verbose = display information about execution time.

4.4 Fine-tuning the face recognition module

The input directory that contains the training images to fine-tune the pre-trained model are in
sparc/external_platform/vision/facenet/input_dir.

The pre-trained model is located in sparc/external_platform/vision/facenet/pre_model, while the fine-tuned model
is located in sparc/external_platform/vision/facenet/classifier.

1. Adding a new face to the database

• Add a new folder containing a set of images of the new face in
sparc/external_platform/vision/facenet/input_dir. The folder name should match the person name.

• Align the face dataset using python aligndata_first.py‘

• Retrain the last layer of the pre-trained model using python create_classifier_se.py

1. Removing existing faces

• Delete the folder associated with the face to be removed from sparc/external_platform/vision/facenet/input_dir

• Retrain the last layer of the pre-trained model using “python create_classifier_se.py

4.5 Generate new QR codes

The images representing the existing QR codes are located in sparc/external_platform/vision/qrcodes_handler/qr_codes
folder. To generate new QR codes:

1. Delete existing images from qrcodes_handler/qr_codes

2. Modify the generate_QRcodes function in qrcodes_handler/qrcodes_handler.py and add each new QR code
as follows:

new_qr_code = pyqrcode.create(‘new_qr_code_name’) new_qr_code.png(‘./qr_codes/new_qr_code_image.png’,
scale=20)

3. Run python qrcodes_handler.py

4.4. Fine-tuning the face recognition module 15

SPARC Documentation, Release 0

16 Chapter 4. Vision configuration

CHAPTER 5

Navigation Module

The navigation module is build upon ROS modules which are integrated into the main software. The navigation
module is working in two phases, the SLAM phase in which Pepper is used to map the environment and must be
moved manually or with an exploration technique in order to build a map and the navigation phase, when the robot
can move on the saved map, in a dynamic environment.

5.1 Creating a new map

A new map can be created by using the full_slam_launch file found in the pepper_sparc node. Once the SLAM
process is began, the robot can be moved in the simulator in order to start the mapping process. The hector_slam
node publishes the occupancy grid on the /map topic.

The map_saver node can be used at any point to save the map. The folder containing the maps can be also found inside
the pepper_sparc node.

In order to save the map simply run:

rosrun map_server map_server mymap.yaml

Make sure you save and mark the starting position of the robot, since this will be considered the home position for the
navigation phase.

5.2 Running the navigation module on a map

Given a new map build in the previous step, mymap.yaml can be used at any point to navigate with
Pepper. The robot should be in the home position. The starting home position must be edited in
sparc/master_catkin_ws/src/pepper_sparc/nav_conf/base_local_planner_params.yaml as described in the ROS
Modules chapter.

First the map should be loaded and the robot should localize itself on the map. This can be done by running the
saved_slam_launch file inside the pepper_sparc node. You should be able to see the robot in the right starting

17

https://github.com/ami-lab/sparc
https://github.com/ami-lab/sparc/tree/master/master_catkin_ws
https://github.com/ami-lab/sparc/tree/master/master_catkin_ws/src
https://github.com/ami-lab/sparc/tree/master/master_catkin_ws/src/pepper_sparc
https://github.com/ami-lab/sparc/tree/master/master_catkin_ws/src/pepper_sparc/nav_conf

SPARC Documentation, Release 0

position. A small error in the starting position is not a reason to worry, since the localization will improve as soon as
the robot starts to move.

The navigation.launch can be found in the same pepper_sparc node and launches the move_base node in order to
make Pepper navigate in a dynamic environment while avoiding obstacles.

18 Chapter 5. Navigation Module

CHAPTER 6

Speech Component

The speech component is based on a publisher-subscriber paradigm. The speech detected by the pub-
lisher is transmitted to the subscriber through a ROS topic. This component is implemented in
sparc/external_platform/robot_interaction folder:

• speech_recognition_publisher.py

• speech_recognition_subscriber.py

The publisher and subscriber communicate through speech_text channel. If the topic name is changed, it must be
changed in both files:

Speech_recognition_subscriber.py
self.recognition_subscriber = rospy.Subscriber('speech_text', String, self.callback_
→˓text)

Speech_recognition_publisher.py
self.publisher = rospy.Publisher('speech_text', String, queue_size=10)

6.1 Speech recognition publisher

The publisher file uses a Google speech recognition engine, for both English and Romanian languages. The script
can be configured to work in either language using the language parameter in the file. Moreover, the implementation
allows the user to input the sentences from keyboard, through the audio_stream parameter.

As the publisher uses a ROS topic to send the recognized sentences, a roscore instance must be started. To run the
script:

python speech_recognition_publisher.py

The script will prompt a question “Audio stream? [y/n]:” to which the user can respond with “y” (yes) or “n” (no),
which represent if the script should use the input from the microphone or not.

19

SPARC Documentation, Release 0

6.2 Speech recognition subscriber

The subscriber file contains a class that subscribes to the ROS topic and tries to interpret the recognized speeches using
wit.ai. The wit.ai application extracts the action to be done and the parameters, if possible, and passes the result to the
rest of the application through the argument method received in the class’ constructor.

To run the script (if you run it as a standalone application, please make sure that the robot_stream flag is false and):

python speech_recognition_subscriber.py

6.2.1 Wit.ai configuration

To work for both languages English and Romanian, two applications were created: sparc and sparc-ro. Each applica-
tion is trained with a set of queries specific to the associated language.

The wit.ai application extracts relevant entities from the queries. The user-defined entities used in the project are:

• intent = specifies which type of action is intended. The intent entity is seen as a trait of the sentence and
considers the sentence as a whole. The application is trained to recognize the following intents:

– hello = greet someone

– stop = stop the current behavior

– say = say something

– go to = go to a position

– find = find a target in the environment

– look = look around for the target

– health = display health statistics

– reminders = display and read out reminders for a person

* next/previous = intents required for voice interaction in reminders behavior (the user can vocally
switch to next or previous reminder)

• target = parameter for say, go to, find, look and reminders intents. The entity is attached to a specific part of the
sentence, which represent the target. Each keyword of the target entity can have multiple synonyms which can
be configured.

• health_entity = parameter for health intent. Similar to target entity.

To use a wit.ai application, an access key must be provided. The access keys for this project are defined in
sparc/external_folder/config.py file, in the access_keys parameter.

The mandatory_intent_entities parameter in sparc/external_folder/config.py file is a dictionary which contains all
the existing intents with the associated list of mandatory entities. That means that if an entity from the mandatory list
is not extracted from the sentence when that specific intent is recognized, the command is invalid. To add a new intent,
a new (key, value) pair needs to be added in the dictionary, where the key represent the intent name and the value the
list of mandatory entities.

6.2.2 Understanding new phrases

To test with new sentences the wit.ai application, follow the next steps:

1. Go to the application page

20 Chapter 6. Speech Component

https://wit.ai/
https://wit.ai/stefaniag/sparc/entities
https://wit.ai/stefaniag/sparc-ro
https://wit.ai/stefaniag/sparc/entities

SPARC Documentation, Release 0

2. In the “User says” box introduce your sentence (e.g.: go to Stephanie)

3. If previously trained, the application will extract some entities Wit.ai
response example

If you want to train the application with the new sentence, select the right entities and click Validate. This will start the
re-training process (the training status, Done, On-going or Scheduled, can be seen in the top-left corner). To associate
a target or health_entity entity to the input sentence:

1. Select the part of the sentence associated with the entity

2. Click “Add a new entity”

3. Choose the appropiate entity

4. Select the associated value (keyword)

6.2. Speech recognition subscriber 21

	Getting Started
	Hardware Prerequisites
	Software Prerequisites
	Project
	External Platform

	Running and Configuration Pepper with ROS
	Installing ROS
	Pepper ROS Integration
	Installing NaoQI
	Installing the required ROS modules

	Testing the Installation

	ROS Modules List
	Configuration

	Vision configuration
	Software Prerequisites
	Testing the vision component
	Testing the vision component
	Fine-tuning the face recognition module
	Generate new QR codes

	Navigation Module
	Creating a new map
	Running the navigation module on a map

	Speech Component
	Speech recognition publisher
	Speech recognition subscriber
	Wit.ai configuration
	Understanding new phrases

